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Abstract

Work to date on computational models of negotiation has focused almost exclusively on defining

contracts consisting of one or a few independent issues and tractable contract spaces. Many real-world

contracts, by contrast, are much more complex, consisting of multiple inter-dependent issues and

intractably large contract spaces. This paper describes a simulated annealing based approach appropriate

for negotiating such complex contracts, evaluates its efficacy, and suggests some potentially promising

avenues for defining more efficient algorithms for negotiating complex contracts.

Introduction

Work to date on computational models of negotiation has focused almost exclusively on defining

contracts consisting of one or a few independent issues [l] [2

follows (Figure 1):

We can frame what these techniques do as

Figure 1: The standard view of negotiation.

Each point on the X axis represents a candidate contract'. The Y axes represents the utility of each

contract to each agent. Both agents have a reservation utility value: only contracts whose utility is above

that agent's reservation value will be accepted. Since relative few issues are involved, the space of all

' For simplicity of e.xposition we show only one dimension in these figures, but in general there will be one dimension for

every issue negotiated over.





possible contracts can be explored exhaustively, and since the issues are independent, the utility

functions mapping a candidate contract to its utility for an agent are linear [3]. in such a context, the

reasonable strategy is for each agent to start at its own ideal contract, and concede, through iterative

proposal exchange, just enough to get the other party to accept the contract. Since the utility functions
are simple, it is feasible for one agent to infer enough about the opponent's utility function through
observation to make concessions likely to increase the opponent's utility.

Real-world contracts, by contrast, are generally much more complex, consisting of a large number of
inter-dependent issues. A typical contract may have tens to hundreds of distinct issues. Even with only
50 issues and two alternatives per issue, we encounter a search space of roughly lO'^lS possible

contracts, too large to be explored exhaustively. The value of one issue selection to an agent, moreover,
will often depend on the selection made for another issue. The value to me of a given DVD player, for

example, depends on whether it is a good match with the tuner and speakers I plan to purchase with it.

Such issue interdependencies lead to nonlinear utility functions with multiple local optima [3]:

Figure 2: Complex negotiation.

In such contexts, an agent finding its own ideal contract becomes a nonlinear optimization problem,

difficult in its own right. Simply conceding as slowly as possible from one's ideal can result in the

agents missing contracts that would be superior from both agent's perspectives. In figure 2 above, for

example, if both agents simply concede slowly from their own ideal towards the opponents' ideal, they

will miss the better contracts on the right. Exhaustive search for such 'win-win' contracts, however, is

impractical due to the size of the search spaces involved. Finally, since the utility functions are quite

complex, it is no longer practical for one agent to learn the other's utility function.

Such contexts, we argue, require radically different negotiation techniques, which allow agents to find

win-win' contracts in intractably large multi-optima search spaces in a reasonable amount of time, in

the following section we describe a negotiation approach that make substantial progress towards

achieving these goals.

IVIediated Single Text Negotiation

A standard approach to dealing with complex negotiations in human settings is the mediated single text

negotiation [4]. In this process, a mediator proposes a contract that is then critiqued by the parties in the





negotiation. A new, hopefully better proposal is then generated by the mediator based on these

responses. This process continues, generating successively better contracts, until the reservation utility

value is met or exceeded for both parties. We can visualize this process as follows (Figure 3):

Figure 3: Single text negotiation.

Here, the vertical line represents the contract currently proposed by the mediator. Each new contract
moves the line to a different point on the X axis. The goal is to find a contract that is sufficiently good
for both parties.

We defined a simple experiment to help us explore how this approach could be instantiated in a

computational framework. In this experiment, there were two agents negotiating to find a mutually
acceptable contract consisting of a vector S of 100 boolean-valued issues, each issue assigned the value

or 1, corresponding to the presence or absence of a given contract clause. This defined a space of
2'^ 100, or roughly lO'^SO, possible contracts. Each agent had a utility function calculated using its own
100x100 influences matrix H, wherein each cell represents the utility increment or decrement caused by
the presence of a given pair of issues, and the total utility of a contract is the sum of the cell values for

every issue pair present in the contract:

100 100

I I H,

i=l j=l

s,s,

The influence matrix therefore captures the dependencies between issues, in addition to the value of any
individual contract clause. For our experiments, the utility matrix was initialized to have random values

between -1 and +1 in each cell. A different influences matrix was used for each simulation run, in order

to ensure our results were not idiosyncratic to a particular configuration of issue inter-dependencies.

The mediator proposes a contract that is initially generated randomly. Each agent then votes to accept or

reject the contract. If both vote to accept, the mediator mutates the contract (by randomly flipping one of
the issue values) and the process is repeated. If one or both agents vote to reject, a mutation of the most
recent mutually acceptable contract is proposed instead. The process is continued until the utility values

for both agents become stable (i.e. until none of the newly generated contract proposals offer any
improvement in utility values for either agent). Note that this approach can straightforwardly be





extended to a N-party (i

the contracts.

.e. multi-lateral) negotiation, since we can have any number of parties voting on

We defined two kinds of agents; hill climbers and simulated annealers. The hill climbers used a very
simple decision function: they accepted a mutated contract only if its utility to them was greater than

that of the last contract they accepted. The annealers were more complicated, implementing a Monte
Carlo machine [5]. Each annealer had a virtual 'temperature' T, such that it will accept contracts worse
than earlier ones with the probability:

P(accept) = e'"''

where AU is the utility change between contracts. In other words, the higher the virtual temperature, and
the smaller the utility decrement, the greater the probability that the inferior contract will be accepted.

The virtual temperature of an annealer gradually dechnes over time so eventually it becomes
indistmguishable from a hill climber. This kind of annealing has proven effective in finding near-optima

in large multiple-optima utility functions, because annealers can move freely through the utility

function, potentially skipping relatively small valleys on the way to higher optima [3]. This suggests that

annealers will be more successful than hill-climbers in finding good contracts through the negotiation

process. The reality, as we shall see, turned out to be more complicated.

Our aggregate results comparing hill-climbers with annealers can be summarized as follows:

Social (HC)

Social (Mixed)

Social (SA)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Proposals (x 100)

Figure 4: Social welfare values

This figure shows the social welfare (i.e. the sum of the contract utilities for the two negotiating agents)

for a pair of annealers, a pair of hill-climbers, and a 'mixed' case with both an annealer with a hill-

climber, averaged over 100 simulafion runs.





The social welfare results revealed two interesting patterns. One is that the presence of annealer agents
always increases social welfare. The social welfare for the two annealer case was roughly 40% greater
than that of the two hill-climber case, and the mixed case produced a smaller but still statistically

significant 15% improvement over the hill-climbers. This confirmed the value of the simulated
armealing approach.

These results can be understood better by looking at the individual agent payoffs:





If one agent is a hillclimber and the other is an annealer, the hillcHmber does well but the annealer fares
very poorly. This pattern can be understood as follows. When an annealer is at a high virtual

temperature, it becomes a chronic conceder, accepting almost anything beneficial or not. The hill-

climber thus in effect 'drags' the annealer towards its own local optimum, which is not particularly
likely to also be optimal for the annealer:

Figure 6: A typical negotiation with an annealer and hillclimber.

In our experiments, most (roughly 60%) of the negotiations between hillclimbers and annealers reached

pareto-optimal contracts, but they tended to unfair and did not maximize social welfare.





The highest social welfare was achieved when both agents are annealers, since they both are willing to

accept mdividually worse contracts in the beginning to help tmd win-win contracts later on:

Pareto

Accepted

Figure 7: A typical negotiation with two annealers.

The contracts found by two annealers are, in addition, much more fair (i.e. the agents achieve roughly

equal normalized utilities) than those found by an annealer paired with a hillclimber.

Our analysis reveals a dilemma, however. In many negotiation contexts we can not assume agents will

be altruistic, and we must as a result design negotiation protocols such that the individually most
beneficial negotiation strategies also produce the greatest social welfare [6] [7] [8]. In other words, we
want the socially most beneficial strategy to also be the individually dominant one so that most agents

will tend to use it. In our case, however, even though annealing is a socially dominant strategy (i.e.

annealer always increase social welfare), annealing is not an individually dominant strategy. Hill-

climbing is dominant, because no matter what strategy the other agent uses, it is better to be a hill-

climber. If all agents do this, however, then they forego the higher individual utilities they would get if

they both annealed (the "tough guy's" penalty). The individual strategic considerations thus drive the

system towards the strategy pairing with the lowest social welfare. This is thus an instance of the

prisoner's dilemma [9].





Further analysis reveals that there is no way to avoid this dilemma within a single negotiation. If both
agents could know ahead of time what strategy the other agent is going to use, then all agents would
select annealing. In an open system environment we can not rely on self-reports for this, since agents are

incented to claim they will use annealing but actually hill-climb. An agent must thus be able to

determine the type of its opponent based purely on observing its behavior. It turns out this is relatively

easy to do. An annealer will tend to accept a much higher percentage of proposed contracts that a hill-

climber, especially at higher virtual temperatures (Figure 8, which shows the proposal acceptance
percentages plus and minus one standard deviation for hill-climber and simulated annealer agents):
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Proposals (x 100)

Figure 8: Proposal acceptance percentages for hill-climbers and annealers.

The problem with this 'adaptive' approach is that determining the type of an agent based on its voting

behavior takes time. Agents must start with a guess concerning the other agent's strategy and then

observe its voting behavior to see what it actually uses. But as figure 4 shows, the divergence in

acceptance rates between annealers and hill-climbers only becomes clear after at least 100 proposal

exchanges or so. By this time, however, much of the contract utility has already been committed, so it is

too late to fully recover from the consequences of having guessed wrong.' In our experiments, for

example, between 40% and 60% of the final social welfare had already been achieved in the first 100

proposal exchanges. The early commitment of utility is a result of the topology of nonlinear utility

functions. These functions are fractal (i.e. self-similar at different scales) with the highest optima also

tending to be the widest. They are thus shaped like mountain ranges, wherein the steepest slope tends to

occur earlier, and the slope reduces as one gets closer to the summit.

While adaptive strategies can not eliminate the prisoner's dilemma, they can however reduce its

magnitude. Let us consider a specific example of an adaptive strategy we can call "tit-for-tat annealing"

(T4TA). In this strategy, an agent starts as an annealer, and then switches to hill-climbing if the other

agent proves to be a hill-climber. One could argue that it is more rational to start with the individually

dominant strategy (hill-climbing), thereby avoiding the conceder's penalty, and then switch to annealing

if the other agent is an annealer. But if everyone does this everyone will stay stuck in hill-climbing so

we still get the "tough guy's" penalty. If we include this strategy we get the following payoff matrix:









information as possible about themselves for fear of presenting other agents with a competitive
advantage. The more proposals considered, however, the more information an agent reveals.

Next Steps: Faster Negotiations

The simulated annealing approach produces better social welfares than hill-climbing but involves larger

numbers of proposal exchanges. What can we do about this?

Better contract alternative generation operators. In our experiments the contract space was explored in

random walk fashion, and all the 'intelligence' was in the evaluation process. One example of a domain-
independent approach we are exploring is 'genetic annealing', which uses abstracted measures of the

issue inter-dependency structure to cluster highly-interdependent issue sets into 'genes' that are

recombined af la sexual reproduction to more quickly explore the large search spaces involved in

contingent contract design.

Introducing (limited) cooperative information exchange. It is clear that if agents cooperate they can

produce higher contract utilities. Imagine for example that two hill-climbers vote to accept a contract

based on whether it increases the social welfare, as opposed to their individual utilities. We have found

that if we compare this with two 'selfish' hill-climbers, the cooperative hill-climbers both benefit

individually compared to the selfish case, thereby increasing social welfare as well. Other kinds of

cooperation are imaginable. Agents can begin by presenting a list of locally [near-]optimal contracts,

and then agree to explore alternatives around the closest matches in their two sets. Note that in the

Erevious work with mdependent issues, this kind of information exchange has not been necessar)'

ecause it relatively easy for agents to infer each other's utility functions from observing then-

negotiation behavior, but with inter-dependent issues and large multiple-optima utility functions this

becomes intractable and information exchange probably must be done explicitly.

Next Steps: Addressing the Prisoner's Dilemma

We have shown that there is no way to avoid the prisoner's dilemma within the scope of a single

negotiation, though we can reduce the magnitude of the effect using adaptive strategies. Previous work
on iterated games [9] has shown however that prisoner's dilemma games, such as the one that emerges in

our case, will result in agents choosing the more socially beneficial concession strategy if the games are

repeated, i.e. if a given pair of agents engages in multiple negotiations, and the agents take into account

what happened with previous negotiations, e.g. conceding only if the other agent has a history of

conceding as well ("tit for tat"). In large agent societies, agents may only rarely have a previous

negotiation history with each other, but this problem can be resolved through the use of reputation

mechanisms that pool reported negotiation experiences over all agents. We would then of course have to

account for the possibility of reputation sabotage [10]. Adaptive strategies are a good complement to

reputation mechanisms since they reduce the negative consequences of getting misleading reputation

information. Another tack is for contractor agents to negotiate with several subcontractors and select the

best contract. This will increase the incentive for agents to be annealers, since chronic "tough guys" may
find themselves without customers.

Next Steps: Contracts as Processes

Another direction we plan to pursue for our future work involves providing a systematic way of defining

the space of possible contracts. Any contract can, we argue, be viewed as the specification 'ior a process

that spells out which actor does what when. The simplest of contracts may only specify that a good is

exchanged for a given monetary consideration. The most complex contracts may spell out, in

excruciating detail, what each party should do in a wide range of normal and exceptional circumstances.

In all cases, however, the contract represents a mutually agreed-to process.

Previous work [ll] has shown that process (and therefore contract) design can be treated as

configuration, wherein one first identifies the abstract process one is interested in, and then customizes it

by selecting specific processes for each of the substeps in the abstract process. To make this concrete,

imagine that we want to subcontract out the task of purchasing goods over the Internet. The first step is

to find an abstract process for this that we can customize. One way to do so is by retrieving the

appropriate process from a process ontology, such as that stored in the MIT Process Handbook [12]. The

Handbook ontology contains over 5000 business process models, ranging from very abstract processes





such as 'allocate resources' to relatively specific ones. The Handbook model for 'buy over internet', for

example, consists of the following substeps:

• Identify needs
• Find sources via internet

• Select supplier

• Place order over internet

• Pay using credit card
• Receive good

Each one of the substeps in this abstract process model has a branch of the process ontology that

captures different ways of achieving this step. The branch for the 'select supplier' substep, for example,
is the following:
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Figure 10; A fragment of the 'select supplier' ontology.





One can therefore start specifying the contract by selecting which one of the alternative 'select supplier'
processes will be used. Repeating this procedure for all the substeps of the abstract 'buy over internet'

process (as well as specifying any necessary attribute values for the selected substep processes) should
result in a complete specification of the normative aspects of the subcontract.

The next step in defining the contract is to consider how the execution of the contract can fail (i.e. its

exceptions) and how those exceptions can be handled. This is an important problem. MAS are
increasingly being viewed as a way to rapidly connect entities that have never worlced together before,
for such applications as disaster recovery operations, open electronic marketplaces, virtual supply
chains, and international coalition military forces [13] [14] [15] [16] [17]. Such 'open' systems introduce a
wide range of potentially devastating exceptions including infrastructure failures, agents reneging on
commitments, denial of service attacks, emergent dysfiinctions such as chaotic behavior [18] [19] and so
on [20] The vast majority of MAS work to date, however, has considered only well-behaved agents
rurming on reliable infrastructures in relatively simple domains [21] [22].

One possible approach to handling contract execution exceptions is to simply require that agents charge
less for their services in proportion to how likely they are to fail at their assigned tasks. The problem
with this approach is that it removes from subcontractor agents any direct incentive to avoid failures or

reduce their impact on the contractor (they have already paid the penalty up-front) and it can be difficult

for the contracting agent to assess the subcontractor failure likelihood and thereby the appropriate
discount. An alternative approach is for the contract to specify the actions, including for example early

notification or penalties, to oe taken for each important exception. The appropriate penalties are easier to

detemiine because the contractor need only estimate the impact (but not the probability) of an exception,

and it provides the subcontractor with incentives to avoid high-impact failures. This thus results in

contracts that increase social welfare.

'

The Process Handbook ontology has been extended to support such contractual specification of
exception handling behavior, by the addition of a taxonomy of generic exception types, such that all

processes are linked to their characteristic exceptions, and all exceptions are linked in turn to processes

suitable for handling (anticipating and avoiding, or detecting and resolving) them [23]. Imagine, for

example, that we have selected a Dutch (descending price) auction process for supplier selection. By
consulting the Process Handbook ontology we can see that such auctions are prone, among other things,

to the 'price collision loop' exception wherein two agents give the same bid for a good, leading the

auctioneer to raise the price and try again, leading to the same bid conflict, ad infinitum. The Handbook
ontology describes a range of handlers for this exception, such as randomly selecting a winner,

disqualifying one or both conflicting bidders, and so on. Once handlers have been selected for all

exceptions that can potentially occur with the selected business process (and any handler process

attributes have been specified as necessary), we have finished specifying the exception-related aspects of
the contract.

It is straightforward to map contract configuration as described above into a negotiation framework:

• for every substep S in the abstract process being specified, create the issue "how do we achieve

substep S?" whose candidate values are all the possible processes suitable for achieving that substep
• for every exception E in the process being defined, create the issue "how do we handle exception

E?" whose candidate values are all the possible processes suitable for handling that exception
• for every process attribute A in the abstract process, substeps and exception handlers, create the issue

"what is tne value for attribute A?" whose candidate values depend on the attribute being considered

The issues involved in designing contingent contracts are thus highly interdependent. The output of one
substep in a process, for example, will often have to match the input of the next substep, so the utility of

one choice is highly dependent on the other choice. The value of a given exception handler can be

dependent upon choices made for the normative steps and for the other exception handlers.

We are grateful to Benjamin Grosof of the MIT Sloan School of Management for pointing out this tradeoff.





This approach relies on treating contract fomiation as configuration from a pre-defined design space, but
this arguably is realistic for many important real-world domains such as supply chains where the
abstract processes and most commonly used alternatives are relatively stable and well-known.

Contributions

We have shown that negotiation with multiple inter-dependent issues has properties that are

substantially different from the independent issue case that has been studied to date in the computational
negotiation literature, and requires as a result different algorithms that can deal effectively with the

nonlinear utility functions. This paper presents, as far as we are aware, the first computational
negotiation approach suited for multiple interdependent issues. The essence of the approach can be
summarized simply: conceding early and often (as opposed to little and late, as is typical for

independent issue negotiations) is the key to achieving good contracts. We have also demonstrated that

negotiation with inter-dependent issues produces a prisoner's dilemma game, a result that is relevant to

any collaborative decision making task involving interdependent decisions.
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